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Kinetics of migration-driven aggregation processes
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We study the kinetic behavior of the growth of aggregates driven by reversible migration between any two
aggregates. For the simple system with the migration rate kernelK(k; j )5K8(k; j )}k jy at which the mono-
mers migrate between the aggregates of sizek and those of sizej, we find that for they<2 case the evolution
of the system always obeys a scaling law. Moreover, the typical aggregate size grows as exp(2IA0t) in the case
of y52 and ast1/(22y) in the case of21,y,2. In particular, wheny<22, the typical aggregate size always
grows ast1/3 and the aggregate-size distribution approaches a similar scaling form.
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Irreversible aggregation is an important phenomenon
natural science@1–3#, and considerable amount of work
have helped to understand the kinetics of these aggrega
processes well@4–8#. Recently, much interest has been d
voted to linking the discussions about the natural aggrega
phenomena to those in life science, such as sociology
economy @9–12#. In order to study universal aggregatio
mechanisms, Ispolatovet al. introduced several different as
set exchange models for the evolution of the wealth distri
tion in the economic interaction population@13#, and
Leyvraz and Redner proposed a migration-driven aggre
growth model for the evolution of city populations@14#. In
these models, there exists preferential evaporation f
smaller aggregates and preferential condensation onto la
aggregates, which is described by an irreversible reac

scheme,Ak1Al →
K(k; l )

Ak211Al 11 (k< l ). Here, Ak denotes
an aggregate consisting of sizek andK(k; l ) is the migration
rate dependent on the sizes of the reactants. The solutio
the rate equation exhibited that the kinetics of this proc
obeys a very different scaling law from that of the conve
tional aggregation process. In fact, the class of the migrat
driven aggregation phenomena occurs in many branche
physics and social sciences@15#. However, for some actua
cases the migration direction may not depend on the rela
sizes of the two aggregates. In this paper, we investigate
kinetics of a general migration-driven aggregation model
which migration goes from the larger to the smaller agg
gates as well as from the smaller to the larger ones.

We now define our migration-driven aggregatio
model. The aggregateAk of size k loses a monome
with a rate K(k; j ) according to the emigration schem

Ak1Aj →
K(k; j )

Ak211Aj
11 , whereAj

11 represents an aggrega
Aj containing a positively charged monomer. Meanwhile,
aggregateAl gains a monomer with a rateK8( l ; j 8) accord-

ing to the immigration schemeAl1Aj 8 →
K8( l ; j 8)

Al 111Aj 8
21 ,

where Aj 8
21 denotes theAj 8 aggregate with a negativel

charged monomer. On the other hand, we assume that a
tively charged aggregate and a negatively charged aggre
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react immediately in the schemeAj
111Aj 8

21 →
J( j ; j 8)

Aj1Aj 8 ,
with the rate J( j ; j 8)→`. The migration scheme of ou
model is thus equivalent to the reactionAk1Al→Ak21
1Al 11, and the aggregatesAj andAj 8 in the above reactions
play roles analogous to the monomer sink and source,
spectively. It is believed that our model may mimic som
social and economic processes. For example, one pe
leaves his hometown~population center! and emigrates to
another district that may not admit him; thus we can consi
that the later district contains a ‘‘positively charged’’ pop
lation. On the other hand, a district that is deprived of a s
member by another one leaves an unoccupied position
possible, an ‘‘unnecessary’’ person may easily take over
vacant position. This phenomenon may occur frequently i
commercially developed area.

We assume that the system has spatial homogeneity
that the fluctuations in the densities of the reactants are
nored and the aggregates are considered to be hom
neously distributed in the space throughout the proce
Thus, the theoretical approach to investigate the kinetics
the aggregation process can be based on the mean-field
equation, which assumes that the reaction proceeds wi
rate proportional to the reactant concentrations. Letak(t) be
the concentration of aggregatesAk of size k at time t. By
generalizing the rate equation of the migration-driven agg
gation process given by Ref.@14#, we write the correspond
ing rate equation for our system as follows:

dak

dt
5(

j 51

`

K~k11; j !ak11aj1(
j 51

`

K8~k21; j !ak21aj

2(
j 51

`

@K~k; j !1K8~k; j !#akaj , ~1!

where we impose the boundary conditiona0(t)50.
For simplicity, we consider a model with a symmetric

migration rate kernel. The rate of theAk aggregate gaining o
losing one monomer is directly proportional to its sizek and
to j y of the opposite aggregateAj , i.e., K(k; j )5K8(k; j )
5Ik j y (I is a constant!. Then Eq.~1! reduces to

dak

dt
5IM y~ t !@~k11!ak111~k21!ak2122kak#, ~2!
©2002 The American Physical Society02-1
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whereM y(t)5( j 51
` j yaj (t).

We assume that there only exist the monomer aggreg
at t50 and the concentration is equal toA0. Then the initial
condition isak(0)5A0dk1. We first consider several simpl
cases with integral indexy.

Wheny50, Eq.~2! can be solved with the help of ansa
@16#

ak~ t !5A~ t !@a~ t !#k21. ~3!

Substituting Eq.~3! into Eq. ~2!, we can transform the rat
equation~2! into the following differential equations:

da

dt
5IA~12a!

dA

dt
522IA2, ~4!

with the corresponding initial conditions

a50, A5A0 at t50. ~5!

One can then derive the exact solutions ofa(t) and A(t)
from Eqs.~4!:

a~ t !512~2IA0t11!21/2, A~ t !5A0~2IA0t11!21.
~6!

Thus we obtain the exact solution ofak(t):

ak~ t !5A~ t !@a~ t !#k21

5A0~2IA0t11!21@12~2IA0t11!21/2#k21. ~7!

Further, Eq.~7! can be rewritten as follows:

ak~ t !.~2It !21exp~2x!, ~8!

which is valid in the scaling region

k@1, t@1, x5k~2IA0t !21/25finite. ~9!

This implies that in the long-time limit the asymptot
aggregate-size distribution satisfies the scaling form@16#

ak~ t !.t2wF@k/S~ t !#, S~ t !}tz, ~10!

where S(t) is the characteristic aggregate size of such
aggregation process. Here, the scaling function is expon
tial, F(x)5exp(2x), and the governing exponents arew
51 and z51/2. The total number isM0(t)5(k51

` ak(t)
5A0(2IA0t11)21/2, which implies that the total densit
decays ast21/2. On the other hand, the total mass of t
aggregates,M1(t)5(k51

` kak(t)[A0, is conserved naturally
by the dynamics of the migration-driven aggregation proc
under any initial conditions~not necessarily the monodis
perse one!. We also find that for this case the typical aggr
gate sizeS(t) grows ast1/2.

Wheny51, with the help of ansatz~3! we then obtain the
following equations from Eq.~2!:

da

dt
5IA,

dA

dt
52

2IA2

12a
. ~11!

Equations~11! are directly solved to yield
05010
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n
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a~ t !512~ IA0t11!21, A~ t !5A0~ IA0t11!22.
~12!

Thus we obtain the scaling solution ofak(t) in the long-time
limit:

ak~ t !.I 22A0
21t22exp~2x!, x5k~ IA0t !21, ~13!

with the exponentsw52 and z51. In this case, the tota
number decays ast21 and the typical aggregate size grow
as t. Moreover, the total mass is conserved by the dynam
of the system. The results also imply that this case is equ
lent to the general irreversible aggregation with a const
reaction rate.

Wheny52, by employing the above technique we reca
Eq. ~2! to

da

dt
5IA1

2IaA

12a
,

dA

dt
52

2IA2

12a
2

4IaA2

~12a!2
. ~14!

These directly yield

a~ t !5122@exp~2IA0t !11#21,
~15!

A~ t !54A0@exp~2IA0t !11#22.

In the long-time limit, the scaling solution ofak(t) is then
given as follows:

ak~ t !.4A0e24IA0texp~2x!, x52ke22IA0t. ~16!

This satisfies the generalized scaling form@17#

ak~ t !.@ f ~ t !#2wF$k/S@ f ~ t !#%, S~ t !}tz, ~17!

wheref (t) is an unusual function of time, such aset, lnt, 2t,
and so on. Thus we find that the exponents are

w54IA0 , z52IA0 , ~18!

which imply that the exponents depend on the reaction raI
as well as the initial concentrationA0. Moreover, the total
number decays as exp(22IA0t) while the characteristic ag
gregate size grows as exp(2IA0t).

Now we turn to the general cases. Summing the gove
ing rate equation~2!, we obtain

dM0

dt
52Ia1M y . ~19!

By analyzing all the above scaling solutions forak(t) in the
different cases, we find thata1(t) can be expressed in th
form a1(t)5M0

2(t)/M1(t) andak(t) (k@1) may be asymp-
totically written in a uniform form as follows:

ak~ t !.
@M0~ t !#2

M1~ t !
exp~2x!, x5k

M0~ t !

M1~ t !
. ~20!

It is reasonable to assume that for general cases the sol
of the rate equation~2! may also be written in the abov
scaling form of Eq.~20!. Thus the problem reduces to findin
2-2
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the two momentsM0(t) andM1(t). For our system,M1(t)
[A0. We cannot determine the exact solution ofM0(t) and
therefore turn to derive its asymptotic solution at large tim
In the long-time limit, we can use the scaling form~20! to
estimateM y(t) as

M y~ t !5(
j 51

`

j yaj.FM1~ t !

M0~ t !G
y11 @M0~ t !#2

M1~ t ! E
0

`

xye2xdx

5G~11y!@M1~ t !#y@M0~ t !#12y, ~21!

which is valid in the case ofy.21. Inserting Eq.~21! into
Eq. ~19!, we obtain

dM0

dt
.2IG~11y!M1

y21M0
32y . ~22!

When y.2, one cannot obtain the solution ofM0(t) from
Eq. ~22!. It implies that the system may undergo a gelatio
like transition in they.2 case. This case will invalidate th
scaling form of Eq.~10! or ~17!. When21,y,2, from Eq.
~22! we derive the asymptotic solution ofM0(t),

M0~ t !.C1t21/(22y), ~23!

where C15@(22y)IG(11y)A0
y21#1/(y22). This shows that

the total number of the aggregates decays ast21/(22y). For
arbitrary exponenty in the range of21,y,2, we obtain
the general scaling solution ofak(t) as follows:

ak~ t !.A0
21C1

2t22/(22y)exp~2x!, x5A0
21C1kt21/(22y),

~24!

with the exponents

w5
2

22y
, z5

1

22y
. ~25!

These show that the evolution behavior of our system ob
a quite different scaling law from that abided by preferen
migration-driven aggregation growth in Ref.@14#. However,
the typical aggregate sizeS(t) grows ast1/(22y) in the gen-
eral case of21,y,2, which is in agreement with the state
ment of the mean aggregate size for symmetric migra
rate in Ref.@14#.

We then investigate the case of22<y<21. When y
521, using ansatz~3! one can recast Eq.~2! to the follow-
ing equations:

da

dt
52

IA

a
~12a!2ln~12a!,

~26!
dA

dt
5

2IA2

a
~12a!ln~12a!.

From Eq.~26! we determine the asymptotic solutions ofa(t)
andA(t) in the long-time limit,

a~ t !.12~ IA0t lnt !21/3, A~ t !.A0~ IA0t lnt !22/3.
~27!
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Then we obtain an unusual scaling description forak(t) at
large times:

ak~ t !.I 22/3A0
1/3~ t ln t !22/3exp~2x!,

~28!
x5k~ IA0t ln t !21/3.

This implies that the evolution behavior of the aggregate-s
distribution obeys a logarithm-correction scaling law, and
exponents arew52/3 andz51/3. Moreover, the total num-
ber decays as (t ln t)21/3 in this case. Similarly, in they5
22 case, one can also obtain the asymptotic scaling solu

ak~ t !.A0~C2t !22/3exp~2x!, x5k~C2t !21/3, ~29!

where C2523IA0*0
1dx@ ln(12x)/x#. This shows that the

aggregate-size distribution satisfies the usual scaling form
Eq. ~10! with constant exponentsw52/3 and z51/3.
Meanwhile, the total number decays ast21/3, and its decay
rate is less than that in they521 case. As for the22,y
,21 case, we cannot find the explicit solution of th
aggregate-size distribution; however, we can predict that
evolution of the system should be consistent with the gen
alized scaling form of Eq.~17!, where the scaling time func
tion f (t) changes fromt ln t to t. Moreover, all the systems
with index y in the range of22,y,21 have the same
universal exponents,w52/3 andz51/3.

When y,22, we find M y.C3@M0(t)#2 (C3 is a finite
constant! in the long-time limit, and Eq.~19! then reduces to
the asymptotic equation as follows:

dM0

dt
.2C4M0

4 , ~30!

whereC45IC3 /A0. Equation~30! directly yields

M0.~3C4t !21/3. ~31!

Thus, we find that for they,22 case the aggregate-siz
distribution also approaches the similar scaling form of E
~29!. In order to confirm it, we investigate the last casey
52`. In this case, the migration occurs only between
monomer aggregates and any other aggregates. Equatio~2!
is then rewritten as

dak

dt
5Ia1@~k11!ak111~k21!ak2122kak#. ~32!

Under the monodisperse initial conditions, Eq.~32! can be
solved exactly with the help of ansatz~3!, and one can then
find

ak~ t !.A0~3IA0t !22/3exp~2x!, x5k~3IA0t !21/3.
~33!

Indeed, Eq.~33! is also similar to the scaling solution~29! of
the y522 case.

In summary, we have introduced a general migratio
driven aggregation model with the symmetric migration ra
kernel K(k; j )5K8(k; j )5Ik j y. Based on the mean-field
theory, we have analyzed the evolution behavior of
2-3
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aggregate-size distribution in general cases with varying
dex y. The results show that wheny<2, the evolution be-
havior of the system always obeys a scaling law differ
from that for the aggregate growth by preferential migrat
in Ref. @14#. Moreover, the aggregate-size distribution sa
fies the conventional scaling form~10! when 21,y,2 or
y<22; and wheny52 or 22,y<21, the evolution of
the aggregate-size distribution obeys the generalized sca
form ~17!. The typical aggregate size grows as exp(2IA0t) in
of

cs

05010
-

t

-
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the y52 case while it grows ast1/(22y) in the 21,y,2
case. The most interesting result is that for they<22 case
the typical aggregate size always grows ast1/3 and the
aggregate-size distribution satisfies the similar scaling fo
with the same exponents. This model may be used to inv
tigate the distribution of city populations as well as the ev
lution of the wealth distribution in economic activities.
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