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Kinetics of migration-driven aggregation processes
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We study the kinetic behavior of the growth of aggregates driven by reversible migration between any two
aggregates. For the simple system with the migration rate ké&(elj) =K’ (k;j)<kj” at which the mono-
mers migrate between the aggregates of kiaad those of sizg¢ we find that for thev<2 case the evolution
of the system always obeys a scaling law. Moreover, the typical aggregate size grows #88xip(the case
of v=2 and ag¥? ¥ in the case of- 1<v<2. In particular, when/< — 2, the typical aggregate size always
grows ast'’® and the aggregate-size distribution approaches a similar scaling form.
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Irreversible aggregation is an important phenomenon in _ _ _ ™ _ G0
natural sciencg1-3], and considerable amount of works react immediately in the schem® ™ “+A;,~ — Aj+A;,
have helped to understand the kinetics of these aggregatioMith the rate J(j;j')—c. The migration scheme of our
processes well4—8]. Recently, much interest has been de-model is thus equivalent to the reactiogh+A—A,_;
voted to linking the discussions about the natural aggregatior Ai+1, and the aggregatés andA; in the above reactions
phenomena to those in life science, such as sociology an@l@y roles analogous to the monomer sink and source, re-
economy[9-17. In order to study universal aggregation speptlvely. It is bellgved that our model may mimic some
mechanisms, Ispolatost al. introduced several different as- SOcial and economic processes. For example, one person

set exchange models for the evolution of the wealth distribuleaves hi_s h_ometowmpopulation _cente)rand emigrates to
tion in the economic interaction populatiofl3], and another district that may not admit him; thus we can consider

L . that the later district contains a “positively charged” popu-
Leyvraz and Redner propos_ed a m!gra'uon dn_ven aggregatlgﬁon_ On the other hand, a district that is deprived of a staff
growth model for the evqlutlon of city populatlorﬁ$4]_. In member by another one leaves an unoccupied position. If
these models, there exists preferentlal evaporatlon fro ossible, an “unnecessary” person may easily take over the
smaller aggregates and preferential condensation onto larg Lcant position. This phenomenon may occur frequently in a

aggregates, which is described by an irreversible reactio ;
ggreg o y Bommercially developed area. . _
schemeAc+A, — A 1+A ., (K<I). Here, A, denotes We assume that the system has spatial homogeneity, so

an aggregate consisting of sizandK (k:1) is the migration that the fluctuations in the densities of the reactants are ig-

rate dependent on the sizes of the reactants. The solution fired and the aggregates are considered to be homoge-

the rate equation exhibited that the kinetics of this proces§€ously distributed in the space throughout the process.
obeys a very different scaling law from that of the conven- 1 hus, the theoretical approach to investigate the kinetics of

tional aggregation process. In fact, the class of the migrationt'® @ggregation process can be based on the mean-field rate

driven aggregation phenomena occurs in many branches gauation, WhiCh assumes that the reactior_l proceeds with a
physics and social sciencéss]. However, for some actual rate proporuongl to the reactant concgntratlong.mgét) be
cases the migration direction may not depend on the relativi® concentration of aggregatég of sizek at timet. By
sizes of the two aggregates. In this paper, we investigate tr@eneralizing the rate equation of the migration-driven aggre-
kinetics of a general migration-driven aggregation model, irdation process given by Refl4], we write th.e correspond-
which migration goes from the larger to the smaller aggre{Nd rate equation for our system as follows:

gates as well as from the smaller to the larger ones.

We now define our migration-driven aggregation @22 K(k+1'j)ak+1a-+z K'(k—1:j)a,_,a;
model. The aggregaté\, of size k loses a monomer dat = ’ = ’ '
with a rate K(k;j) according to the emigration scheme "

K(ki) _ o
ActA; — A1 +Aft, whereA ! represents an aggregate —le [K(k:))+K'(k:j)]aka;, 1)

A, containing a positively charged monomer. Meanwhile, the

aggregate’; gains a monomer with a rate’(l;j’) accord-  where we impose the boundary conditiag(t)=0.

_ L K(hi" . For simplicity, we consider a model with a symmetrical
Ing to th_el immigration schemé+A;, — A 1tA;", migration rate kernel. The rate of tig aggregate gaining or
where A;,~ denotes theA;, aggregate with a negatively |osing one monomer is directly proportional to its skeand
charged monomer. On the other hand, we assume that a pogd- j” of the opposite aggregai®;, i.e., K(k;j)=K’(k;j)
tively charged aggregate and a negatively charged aggregatelkjv (I is a constant Then Eq.(1) reduces to

da.k
*Electronic address: kejianhong@yahoo.com.cn dt IM(OLk+ Da s+ (k=Da-g—2kad,  (2)
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whereM (t) ==/, j"a;(t).

We assume that there only exist the monomer aggregates

att=0 and the concentration is equalAg. Then the initial
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a(t)=1—(1Agt+1)" %, A(t)=Ag(1Ast+1) 2

(12

condition isa,(0)=Ayd,;. We first consider several simple Thus we obtain the scaling solution a(t) in the long-time

cases with integral index.

Whenv=0, Eq.(2) can be solved with the help of ansatz

[16]
a(t)=A(D[a(t) ] % )

Substituting Eq(3) into Eqg. (2), we can transform the rate

equation(2) into the following differential equations:

=1A(1-a) d—A=—2|A2 (4)
dt ’

dt
with the corresponding initial conditions
a=0, A=A, att=0. (5

One can then derive the exact solutionsagf) and A(t)
from Egs.(4):

a(t)=1—(21Axt+1)"2,  A(t)=Ag(21At+1)"?

®
Thus we obtain the exact solution af(t):
at)=A[at)]*
=Ag(21At+1) Y 1—(21At+1) Y21 (7)
Further, Eq.(7) can be rewritten as follows:
ay(t)=(21t) " texp(—x), tS)
which is valid in the scaling region
k>1, t>1, x=Kk(2IAt) Y?=finite. (9)

This implies that in the long-time limit the asymptotic

aggregate-size distribution satisfies the scaling fpt6i

a ()=t "O[k/S(t)], S(t)et? (10

limit:

a()=1"2Ag" 2exp(—x), x=k(IAqt)"%, (13
with the exponentsv=2 andz=1. In this case, the total
number decays as * and the typical aggregate size grows
ast. Moreover, the total mass is conserved by the dynamics
of the system. The results also imply that this case is equiva-
lent to the general irreversible aggregation with a constant
reaction rate.

Whenv=2, by employing the above technique we recast
Eq.(2) to

da_IA 2laA dA  21A?  4laA? 14
dt 1-a’ dt _1—a_(1_a)2' (149
These directly yield
a(t)=1—2[exp(21Apt)+1] %,
(15

A(t)=4A [ exp(21Agt)+1] 2.

In the long-time limit, the scaling solution @ (t) is then
given as follows:

a (t)=4A e HMolexp(—x), x=2ke 2o, (16)
This satisfies the generalized scaling forh?]
a)=[f(O] O/},  SHy=t?, (17

wheref(t) is an unusual function of time, such &s Int, 2t
and so on. Thus we find that the exponents are

w=41A,, z=2IA,, (18)

which imply that the exponents depend on the reactionlrate
as well as the initial concentratiofy,. Moreover, the total
number decays as expRIAgt) while the characteristic ag-

where S(t) is the characteristic aggregate size of such amyregate size grows as expigt).
aggregation process. Here, the scaling function is exponen- Now we turn to the general cases. Summing the govern-

tial, ®(x)=exp(—x), and the governing exponents ane
=1 and z=1/2. Thetotal number isMg(t)==;_;a.(t)

=Ao(21Aot+1)" Y2 which implies that the total density
decays ag /2. On the other hand, the total mass of the
aggregatesvl,(t) = =,_,ka,(t)=A,, is conserved naturally

ing rate equatiori2), we obtain

dM,

W=—|ale.

(19

by the dynamics of the migration-driven aggregation proces8Y analyzing all the above scaling solutions fy(t) in the
under any initial conditiongnot necessarily the monodis- different cases, we find that;(t) can be expressed in the
perse ong We also find that for this case the typical aggre-form a;(t)=Mj(t)/M(t) anda(t) (k>1) may be asymp-

gate sizeS(t) grows ast*’?.
Whenv= 1, with the help of ansat) we then obtain the
following equations from Eq(2):

21A%
1-a’

da_ dA_

E—IA, T (12)

Equations(11) are directly solved to yield

totically written in a uniform form as follows:

[Mo(t)]? Mo(t)
M (t) Mq(t)

a(t)=——F—exp—x), x=k (20)

It is reasonable to assume that for general cases the solution
of the rate equatiori2) may also be written in the above
scaling form of Eq(20). Thus the problem reduces to finding

050102-2



RAPID COMMUNICATIONS

KINETICS OF MIGRATION-DRIVEN AGGREGATION . .. PHYSICAL REVIEW BE56, 05010ZR) (2002

the two momentdvio(t) andM(t). For our systemM(t) Then we obtain an unusual scaling description dpft) at
=A,. We cannot determine the exact solution\b§(t) and  large times:
therefore turn to derive its asymptotic solution at large times.

In the long-time limit, we can use the scaling for20) to a(t)=1"2PA7"(tInt) "2 "Pexp —x),
estimateM ,(t) as B (28
x=k(1Ast Int) Y3,
*© v+1 2 ro
M (t)= 2 jray= Ma(t) [Mo(D)] f x’e *dx This implies that the evolution behavior of the aggregate-size
i=1 Mo(t) M1 () Jo distribution obeys a logarithm-correction scaling law, and the
—T(1+0)[My(D)]TMo(H) ], 21) exponents arev=2/3 andz=1/3. Moreover, the total num-

ber decays ast{nt)"* in this case. Similarly, in the=
which is valid in the case of>—1. Inserting Eq(21) into — 2 case, one can also obtain the asymptotic scaling solution

Eg. (19), we obtain a(t)=Ay(C,ot) " 2Bexp(—x), x=Kk(C,t) Y3, (29

Mo

Tz_|r(l+v)|\/|z*1|\/|g*"_ (220  Wwhere C2=—3|A0f(1)dx[ln(1—x)/x]. This shows that the

aggregate-size distribution satisfies the usual scaling form of
Eqg. (10) with constant exponentsv=2/3 and z=1/3.
Meanwhile, the total number decaystas’®, and its decay
rate is less than that in the= —1 case. As for the-2<wv
<-—1 case, we cannot find the explicit solution of the
aggregate-size distribution; however, we can predict that the
evolution of the system should be consistent with the gener-
M(t)=Cyt~ Y20, (23 alized scaling form of Eq(17), where the scaling time func-
tion f(t) changes frontInt to t. Moreover, all the systems
where Cl=[(2—v)IF(1+v)A5‘1]1’(”‘2). This shows that Wwith index v in the range of-2<wv<—1 have the same
the total number of the aggregates decays$ @42~ ¥). For  universal exponentsy=2/3 andz=1/3.
arbitrary exponenvw in the range of-1<v<2, we obtain Whenwv< -2, we findM,=C3[M(t)]* (C3 is a finite

the general scaling solution af(t) as follows: constankin the long-time limit, and Eq(19) then reduces to
the asymptotic equation as follows:

Whenv>2, one cannot obtain the solution bfy(t) from
Eq. (22). It implies that the system may undergo a gelation-
like transition in thev>2 case. This case will invalidate the
scaling form of Eq(10) or (17). When—1<wv<2, from Eg.
(22) we derive the asymptotic solution & (t),

a,(t) :Aa 1C%t_2/(2_ v)exq —X), X= AE 1C1kt_ 1/(2— U)!
(24 dMgq N .
Tar Mo (30
with the exponents

whereC,=1C3/A,. Equation(30) directly yields

w= 27— = 27— (25) M02(3C4t)71/3' (31)

These show that the evolution behavior of our system obey§hus, we find that for the/<—2 case the aggregate-size
a quite different scaling law from that abided by preferentia/distribution also approaches the similar scaling form of Eg.
migration-driven aggregation growth in R¢L4]. However, (29). In order to confirm it, we investigate the last case,
the typical aggregate siZ(t) grows ast¥(>~? in the gen- = —%- In this case, the migration occurs only between the
eral case of- 1< v<2, which is in agreement with the state- Monomer aggregates and any other aggregates. Equdjion
ment of the mean aggregate size for symmetric migratior then rewritten as
rate in Ref[14]. d

We then investigate the case ef2<v<-—1. Whenv 9% _ lag[(k+1)ay. 1+ (k—1)a,_,—2kag]. (32
= —1, using ansatz3) one can recast E@2) to the follow- dt

ing equations: . A .
ng equat Under the monodisperse initial conditions, E§2) can be

da IA solved exactly with the help of ansat2), and one can then
az—;(l—a)zln(l—a), find

dA 2IA (26) a (1) =Ag(3I1Aqt) " Pexp(—x), x=Kk(3IAqt) 3
G- (1-ajn(i-a). 33

Indeed, Eq(33) is also similar to the scaling solutid@9) of
From Eq.(26) we determine the asymptotic solutionsagt) the v=—2 case.

andA(t) in the long-time limit, In summary, we have introduced a general migration-
driven aggregation model with the symmetric migration rate
a(t)=1— (1At Int) "3, A(t)=A(1Aqt Int) 23, kernel K(k;j)=K'(k;j)=1kj*. Based on the mean-field

(27 theory, we have analyzed the evolution behavior of the
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aggregate-size distribution in general cases with varying inthe v=2 case while it grows as”’? ¥ in the —1<wv<2

dex v. The results show that whem<2, the evolution be- case. The most interesting result is that for the—2 case
havior of the system always obeys a scaling law differenthe typical aggregate size always grows td8 and the
from that for the aggregate growth by preferential migrationaggregate-size distribution satisfies the similar scaling form
in Ref.[14]. Moreover, the aggregate-size distribution satis-With the same exponents. This model may be used to inves-
fies the conventional scaling fortl0) when —1<v<2 or tigate the distribution of city populations as well as the evo-
v<—-2: and whenv=2 or —2<wv<-—1, the evolution of lution of the wealth distribution in economic activities.

the aggregate-size distribution obeys the generalized scaling This project was supported by the National Natural Sci-
form (17). The typical aggregate size grows as expg in ence Foundation of China under Grant No. 10175008.
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